Gambogenic acid alters chemosensitivity of breast cancer cells to Adriamycin
نویسندگان
چکیده
BACKGROUND Breast cancer remains a major health problem worldwide, and is becoming increasingly resistant to traditional drug treatments. For instance, Adriamycin (ADR) is beneficial for the treatment of breast cancer. However, its wide application often leads to drug resistance in clinic practice, which results in treatment failure. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional medicine gamboge, has been reported to effectively inhibit the survival and proliferation of cancer cells. Its effects on ADR resistance have not yet been reported in breast cancer. In this study, we examined the ability of GNA to modulate ADR resiatance and the molecular mechanisms underlying this process using a cell based in vitro system. METHODS An MTT assay was used to evaluate the inhibitory effect of the drugs on the growth of MCF-7 and MCF-7/ADR cell lines. The effects of drugs on apoptosis were detected using Annexin-V APC/7-AAD double staining. The expression of apoptosis-related proteins and the proteins in the PTEN/PI3K/AKT pathway were evaluated by Western blot analysis. RESULTS In the MCF-7/ADR cell lines, the IC50 (half maximal inhibitory concentration) of the group that received combined treatment with GNA and ADR was significantly lower than that in the ADR group, and this value decreased with an increasing concentration of GNA. In parallel, GNA treatment increased the chemosensitivity of breast cancer cells to ADR. The cell apoptosis and cell cycle anaysis indicated that the anti-proliferative effect of GNA is in virtue of increased G0/G1 arrest and potentiated apoptosis. When combined with GNA in MCF-7/ADR cell lines, the expression levels of the tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) and the apoptosis-related proteins caspase-3 and capsese-9 were significantly increased, while the expression of phosphorylated AKT was decreased. CONCLUSIONS Our study has indicated a potential role for GNA to increase the chemosensitivity of breast cancer cells to ADR. This modulatory role was mediated by suppression of the PTEN/PI3K/AKT pathway that led to apoptosis in MCF-7/ADR cells. This work suggests that GNA may be used as a regulatory agent for treating ADR resistance in breast cancer patients.
منابع مشابه
Cross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کاملCross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کاملThe function role of miR-181a in chemosensitivity to adriamycin by targeting Bcl-2 in low-invasive breast cancer cells.
OBJECTIVES miR-181a is involved in immunity, metabolism, tumor suppression or carcinogenesis reported by many other studies. However, its role in the development of chemosensitivity to adriamycin in low-invasive breast cancer cells remains unclear. The aim of this study is to define the function role of miR-181a in promoting the efficacy of adriamycin-based neoadjuvant chemotherapy. METHODS C...
متن کاملCRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملPre and post chemotherapy evaluation of breast cancer patients: Biochemical approach of serum selenium and antioxidant enzymes
Backgrounds: Chemotherapy for treatment of breast cancer uses some drugs to target and destroy the cancer cells. However, most of antineoplastic treatments are non-specific and the innate cells will be damaged. In this study, the effect of Adriamycin/Cytoxan (AC) chemotherapy on status of antioxidant enzymes and Se levels in breast cancer patients was evaluated. Methods: A prospective study, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015